English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3950191      Online Users : 988
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/119827


    Title: A promising bioelectrochemical reactor integrating membrane distillation and microbial fuel cell for dual advantages of power generation and water recovery
    Authors: Cao, Thanh Ngoc-Dan;Chen, Shiao-Shing;Chang, Hau-Ming;Bui, Thanh Xuan;Chien, I-Chieh
    Date: 2020-07-14
    Issue Date: 2021-01-06 12:10:33 (UTC+8)
    Abstract: In the present study, water recovery from wastewater was accomplished simultaneously with the electrical energy production from biofuel as a source of organic matter, by the novel integration of distillation membrane and microbial fuel cell to create a system called the membrane distillation microbial fuel cell (MDMFC). A hydrophobic 0.45 μm membrane made of polytetrafluoroethylene (PTFE) was employed as a separator between the cathodic and anodic compartments to investigate multiple benefits of MDMFC for electricity generation, wastewater treatment and water reclamation at different temperature conditions. A high open-circuit voltage of 0.724 ± 0.07 V and a short circuit current of 64.55 ± 2.56 μA were achieved at 45 °C with an initial flux of 3.5 LMH. In the anodic chamber, Firmicutes, Proteobacteria, and Bacteroidetes were detected as dominant species at 45 °C, among which the Proteobacteria and Firmicutes were the most abundant sequences when an artificial substrate was used for feeding. The results indicate that 45 °C is the temperature that most significantly influences the electrochemical performance of MDMFC because of the dominance of bacterial community. Moreover, the power density increased by 99.9% when the temperature increased from 35 °C (0.99 μW m−3) to 45 °C (1552 μW m−3) and decreased by 97% when the temperature was further increased to 55 °C (43.91 μW m−3). Consequently, this study confirms that MD and MFC can be combined for the sustainable development of a water-energy nexus.
    Relation: Environmental Science: Water Research & Technology 6, 2776-2788
    DOI: 10.1039/D0EW00379D
    Appears in Collections:[Graduate Institute & Department of Water Resources and Environmental Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML100View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback