淡江大學機構典藏:Item 987654321/119731
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8380290      在线人数 : 7390
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/119731


    题名: Autonomous Indoor Passageway Finding Using 3D Scene Reconstruction with Stereo Vision
    作者: HSIAO, FU-YUEN;LEE, PO-YI
    关键词: Stereo vision;Indoor navigation;Sum of squared differences (SSD);3D scene reconstruction
    日期: 2020-11-13
    上传时间: 2020-12-16 12:10:13 (UTC+8)
    出版者: AASRC
    摘要: This paper studies an algorithm that navigates a robot in an unknown environment with a stereo vision system. Different from a commonly used SLAM method that computes the distance between the robot and a landmark, our study intends to autonomously find an opening, such as a hallway or a window, for the robot to pass. After transforming the regular RGB images, we perform the 3D scene reconstruction in the gray-scale space. The sum of squared differences (SSD) algorithm is applied to match pixels and estimate the shifting distances. An algorithm is proposed to determine the passageway of the environment for guidance purpose. Experiments are presented to demonstrate the validity of our study, and compared with the commercial Kinect kit. The result of the research is especially applicable to surveil in an unknown building or an indoor disaster site.
    關聯: Journal of Aeronautics Astronautics and Aviation 52(4), p.361-370
    DOI: 10.6125/JoAAA.202012_52(4).02
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Autonomous Indoor Passageway Finding Using 3D Scene Reconstruction with Stereo Vision.pdf1024KbAdobe PDF3检视/开启
    index.html0KbHTML116检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈