淡江大學機構典藏:Item 987654321/119677
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62819/95882 (66%)
造訪人次 : 4005741      線上人數 : 407
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/119677


    題名: Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia
    作者: Lin, Chiao-Wen;Lin, Shi-Xiang;Kankala, Ranjith Kumar;Busa, Prabhakar;Deng, Jin-Pei;Lue, Sheng-I;Liu, Chen-Lun;Weng, Ching-Feng;Lee, Chia-Hung
    關鍵詞: Bile acid sequestrants;Two-dimensional;Cholesterol;Layered double hydroxides;Nanoparticles
    日期: 2020-11-30
    上傳時間: 2020-12-02 12:10:17 (UTC+8)
    出版者: Elsevier
    摘要: The surface modification of two-dimensional (2D) nanocontainers with versatile chemical functionalities offers enormous advantages in medicine owing to their altered physicochemical properties. In this study, we demonstrate the fabrication of surface-functionalized layered double hydroxides (LDHs) towards their use as effective intestinal bile acid sequestrants. To demonstrate these aspects, the LDHs are initially modified with an amino silane, N1-(3-trimethoxysilylpropyl) diethylenetriamine (LDHs-N3), which, on the one hand, subsequently used for the fabrication of the dendrimer by repetitive immobilization of ethylene diamine using methyl acrylate as a spacer. On the other hand, these surface-functionalized LDHs are wrapped with an anionic enteric co-polymer to not only prevent the degradation but also increase the stability of these 2D nanoplates in an acidic environment of the stomach to explore the in vivo efficacy. In vitro cholic acid adsorption results showed that these surface-functionalized LDHs displayed tremendous adsorption ability of bile salt. Consequently, the bile salt adsorption results in vivo in mice confirmed that the enteric polymer-coated diethylenetriamine silane-modified LDHs, resulting in the reduced cholesterol by 8.2% in the high fat diet-fed mice compared to that of the oil treatment group with augmented 28% of cholesterol, which gained weight by 6.7% in 4 weeks. Notably, the relative organ (liver and kidney) weight analysis and the tissue section of histology results indicated that the modified LDHs showed high biocompatibility in vivo. Together, our findings validate that these surface-functionalized 2D nanoplates have great potential as effective intestinal bile acid sequestrants.
    關聯: International Journal of Pharmaceutics 590, 119921
    DOI: 10.1016/j.ijpharm.2020.119921
    顯示於類別:[化學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML104檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋