淡江大學機構典藏:Item 987654321/119558
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10042505      在线人数 : 21215
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/119558


    题名: Design of a Metal 3D Printing Patient-Specific Repairing Thin Implant for Zygomaticomaxillary Complex Bone Fracture Based on Buttress Theory Using Finite Element Analysis
    作者: Yu-Tzu Wang, Chih-Hao Chen, Po-Fang Wang, Chien-Tzung Chen, Chun-Li Lin
    关键词: bony supporting;patient matched;3D printing;topology optimization;finite element method
    日期: 2020-07-09
    上传时间: 2020-11-16 12:10:46 (UTC+8)
    出版者: MDPI AG
    摘要: This study developed a zygomaticomaxillary complex (ZMC) patient-specific repairing thin (PSRT) implant based on the buttress theory by integrating topology optimization and finite element (FE) analysis. An intact facial skeletal (IFS) model was constructed to perform topology optimization to obtain a hollow skeleton (HS) model with the structure and volume optimized. The PSRT implant was designed based on the HS contour which represented similar trends as vertical buttress pillars. A biomechanical analysis was performed on a ZMC fracture fixation with the PSRT implant and two traditional mini-plates under uniform axial loads applied on posterior teeth with 250 N. Results indicated that the variation in maximum bone stress and model volume between the IFS and HS models was 15.4% and 75.1%, respectively. Small stress variations between the IFS model and repairing with a PSRT implant (2.75–26.78%) were found for compressive stress at frontal process and tensile stress at the zygomatic process. Comparatively, large stress variations (30.67–96.26%) with different distributions between the IFS model and mini-plate models were found at the corresponding areas. This study concluded that the main structure/contour design of the ZMC repair implant according to the buttress position and orientation can obtain a favorable mechanical behavior.
    關聯: applied sciences 10(14), 4738
    DOI: 10.3390/app10144738
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Design of a Metal 3D Printing Patient-Specific Repairing Thin Implant for Zygomaticomaxillary Complex Bone Fracture Based on Buttress Theory Using Finite Element Analysis.pdf5197KbAdobe PDF49检视/开启
    index.html0KbHTML200检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈