English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91867 (63%)
造访人次 : 14038118      在线人数 : 85
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/119181


    题名: SurfNetv2: An Improved Real-time SurfNet and Its Applications to Defect Recognition of Calcium Silicate Boards
    作者: Tsai, Chi-Yi;Chen, Hao-Wei
    关键词: deep learning;supervised end-to-end learning;surface defect recognition;SurfNet;calcium silicate boards
    日期: 2020-08-05
    上传时间: 2020-09-23 12:11:08 (UTC+8)
    摘要: This paper presents an improved Convolutional Neural Network (CNN) architecture to recognize surface defects of the Calcium Silicate Board (CSB) using visual image information based on a deep learning approach. The proposed CNN architecture is inspired by the existing SurfNet architecture and is named SurfNetv2, which comprises a feature extraction module and a surface defect recognition module. The output of the system is the recognized defect category on the surface of the CSB. In the collection of the training dataset, we manually captured the defect images presented on the surface of the CSB samples. Then, we divided these defect images into four categories, which are crash, dirty, uneven, and normal. In the training stage, the proposed SurfNetv2 is trained through an end-to-end supervised learning method, so that the CNN model learns how to recognize surface defects of the CSB only through the RGB image information. Experimental results show that the proposed SurfNetv2 outperforms five state-of-the-art methods and achieves a high recognition accuracy of 99.90% and 99.75% in our private CSB dataset and the public Northeastern University (NEU) dataset, respectively. Moreover, the proposed SurfNetv2 model achieves a real-time computing speed of about 199.38 fps when processing images with a resolution of 128 × 128 pixels. Therefore, the proposed CNN model has great potential for real-time automatic surface defect recognition applications.
    關聯: Sensors 20(16), 4356
    DOI: 10.3390/s20164356
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML22检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈