English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62819/95882 (66%)
Visitors : 4002903      Online Users : 676
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/119004


    Title: Interconnections of Low-Temperature Solder and Metallizations
    Authors: Y.W.Wang, C. R. Kao
    Keywords: low-temperature process;In-based solder;Cu-In- Ni compounds;microvoids
    Date: 2020-09-15
    Issue Date: 2020-07-28 12:11:02 (UTC+8)
    Publisher: IEEE
    Abstract: The development of solder is from Pb-bearing to
    Pb-free solder because of toxin. Nowadays, Sn-based solder is usually chosen as the prime materials in electronic packaging. However, the melting point of Sn-based solder is higher than Pb bearing solder about 40 oC. High process temperature causes the
    side effects on devices such as warpage, crack and damage. Requiring the melting point of solder is below 200 oC to overcome thermal budget. In is a good candidate to replace Sn owing to its good mechanical properties. Recently, a Cu/In structure is developed for 3D integration applications.
    Nevertheless, fewer researches investigate low temperature reaction between Cu and In. Previous literature of Cu-In interfacial reactions were focused on thick In layer and high temperature reactions. Studying thin In layer and low temperature reactions are important for 3D IC integration. Microstructure evolution of Cu-In compounds at lowtemperature
    are regarded as useful database for interfacial
    reaction. This study not only concentrates on Cu/In reaction but also discusses deeply the reaction between Cu, In and Ni. Electroplating In layer on Cu metallization and subsequently electroplating Ni on In. The electroplating procedure is one of the major challenges because of the rapid diffusion of Cu and In.
    Microstructure observation are from 100 oC to 140 oC. The samples were mounted in epoxy resin and ground with SiC paper and Al2O3 powders. The reaction zone was observed using an optical microscope and a scanning electron microscope (SEM). The compositions of Cu-In and Ni-In compounds were
    determined using an electron microprobe (FE-EPMA). The main results were as follows: (1) (Cu,Ni)In2 formation after electroplating, (2) (Cu,Ni)In2 is stable at 100 oC, (3) (Cu,Ni)11In9 is dominant phase at 140 oC, (4) Microvoids within (Cu,Ni)11In9 and (Ni,Cu)3In7 formation at 120 oC. The result provides detailed Cu-In compounds development and key findings related to the reliability of In-based solder. This study presents
    the growth of intermetallic compounds in Cu/In/Ni scheme resulting from aging at 100 oC and 140 oC.
    Relation: IEEE
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Proceeding

    Files in This Item:

    File SizeFormat
    index.html0KbHTML12View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback