English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57517/91034 (63%)
造訪人次 : 13455172      線上人數 : 366
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118912

    題名: Retrospective analysis for phase I statistical process control and process capability study using revised sample entropy
    作者: Chang, Shing I.;Zhang, Zheng;Koppel, Siim;Malmir, Behnam;Kong, Xianguang;Tsai, Tzong-Ru;Wang, Donghai
    關鍵詞: Sample entropy;Change points;Process capability analysis;Statistical process control
    日期: 2018-06-13
    上傳時間: 2020-07-14 12:10:38 (UTC+8)
    出版者: Springer U K
    摘要: This study explored a new nonparametric analytical method for identifying heterogeneous segments in time-series data for data-abundant processes. A sample entropy (SampEn) algorithm often used in signal processing and information theory can also be used in a time series or a signal stream, but the original SampEn is only capable of quantifying process variation changes. The proposed algorithm, the adjusted sample entropy (AdSEn), is capable of identifying process mean shifts, variance changes, or mixture of both. A simulation study showed that the proposed method is capable of identifying heterogeneous segments in a time series. Once segments of change points are identified, any existing change-point algorithms can be used to precisely identify exact locations of potential change points. The proposed method is especially applicable for long time series with many change points. Properties of the proposed AdSEn are provided to demonstrate the algorithm’s multi-scale capability. A table of critical values is also provided to help users accurately interpret entropy results.
    關聯: Neural Computing and Applications 31, p.7415-7428
    DOI: 10.1007/s00521-018-3556-4
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋