淡江大學機構典藏:Item 987654321/118887
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4028546      在线人数 : 575
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118887


    题名: Implementation of statistical process control framework with machine learning on waveform profiles with no gold standard reference
    作者: Chou, S-H;Chang, S;Tsai, Tzong-Ru;Lin, DKJ;Xia, Y;Lin, Y-S
    关键词: Individual control chart;PAM clustering method;Support vector machine
    日期: 2020-04
    上传时间: 2020-07-09 12:10:21 (UTC+8)
    出版者: Elsevier Ltd
    摘要: Condensation water temperature profiles are collected from a curing process for high-pressure hose products. The shape of those profiles resembles sine waves with diminishing amplitudes. A gold standard wave profile does not exist. Instead some wave profiles with various frequency and amplitudes are deemed normal for the water release operation. To the best of our knowledge, the current practice and research on SPC do not provide a solution for monitoring wave profiles of this kind. We leveraged existing methods, tools, algorithms that can be found in open source or commercial software for quick response to this type of problem. The proposed SPC implementation framework first converts waveform profiles from the time domain to the frequency domain. Then a set of phase I IX control charts is constructed based on a Partition Around Medoids (PAM) clustering method. A Support Vector Machine (SVM) classifier is then used to label a new profile to its associated group for phase II monitoring so that the IX chart associated with a homogeneous group can provide better process monitoring. Overall 146 water temperature profiles were collected in phase I process, while 39 profiles were captured in phase II process. Out of those 39 profiles, 6 of which were recognized as abnormal waveform profiles by quality engineers and our judgements. The proposed framework with machine learning and SPC implementation in the frequency domain works well during phase I control charting with low false alarm rates. The proposed framework also outperforms the other profile analysis methods in phase II control charting in term of high detection rate of abnormal profiles.
    關聯: Computers & Industrial Engineering 142, 106325
    DOI: 10.1016/j.cie.2020.106325
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Implementation of statistical process control framework with machine learning on waveform profiles with no gold standard reference.pdf5614KbAdobe PDF34检视/开启
    index.html0KbHTML102检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈