English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3941797      線上人數 : 1043
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118855


    題名: Silicon Microwire Arrays Decorated with Amorphous Heterometal-doped Molybdenum Sulfide for Water Photoelectrolysis
    作者: Chen, C. J.;Yang, K. C.;Liu, C. W.;Lu, Y. R.;Dong, C. L.;Wei, D. H.;Hu, S. F.;Liu, R. S.
    關鍵詞: Water splitting;Co-catalyst;Molybdenum sulfide;Silicon microwire array;Solar hydrogen evolution
    日期: 2017-02
    上傳時間: 2020-07-06 12:10:33 (UTC+8)
    出版者: Elsevier BV
    摘要: Silicon is a promising photocathode material for solar hydrogen evolution because of its small band gap, negative conduction band position, and ideal theoretical current density. In this study, p-type Si microwire (p-Si MW) arrays were prepared as photocathodes because of the large surface area and high light-harvesting capability. However, Si MWs suffered from low photocatalytic activity because of slow photo-induced carriers during driving of water-splitting reaction. Therefore, molybdenum sulfide (MoS2) with appropriate band alignment with p-Si material was employed for surface modification to function as a co-catalyst for collecting photo-generated minority carriers and reducing recombination possibility. The onset potential and current density at 0 V versus reversible hydrogen electrode (RHE) of Si@MoS2 MWs were +0.122 V and −8.41 mA cm−2. Heterometal atoms were employed to dope MoS2 co-catalyst and expose more sulfur-terminated active sites to further boost photoelectrochemical performance. Optimal activity of Si@MMoSx (M = Fe, Co, Ni) was achieved by doping Co heteroatoms, and its turn-on voltage and photocurrent density at 0 V (vs. RHE) were respectively increased to +0.192 V and −17.2 mA cm−2. X-ray absorption spectroscopy was applied to demonstrate that Fe ions of FeMoSx were dichalcogenide materials, forming a composite with MoS2 and contributing better photoelectrolytic efficiency. By contrast, two-valent heteroatoms of CoMoSx and NiMoSx substituted the Mo4+ ions in MoS2. For charge compensation, more defects and edges were revealed as active sites of solar hydrogen production by adding Co or Ni dopants in MoS2 co-catalyst, which led to lower overpotential.
    關聯: Nano Energy 32, p.422-432
    DOI: 10.1016/j.nanoen.2016.12.045
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML46檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋