 English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60861/93527 (65%) 造訪人次 : 1507391      線上人數 : 9
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
 搜尋範圍 全部機構典藏 工學院    土木工程學系暨研究所       --期刊論文 查詢小技巧：您可在西文檢索詞彙前後加上"雙引號"，以獲取較精準的檢索結果若欲以作者姓名搜尋，建議至進階搜尋限定作者欄位，可獲得較完整資料 進階搜尋
 主頁 ‧ 登入 ‧ 上傳 ‧ 說明 ‧ 關於機構典藏 ‧ 管理 淡江大學機構典藏 > 工學院 > 土木工程學系暨研究所 > 期刊論文 >  Item 987654321/118783

 請使用永久網址來引用或連結此文件: `https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118783`

 題名: Analytical and numerical studies for solving Steklov eigenproblems by using the boundary integral equation method / boundary element method 作者: Chen, Jeng-Tzong;Lee, Jia-Wei;Lien, Kuen-Ting 關鍵詞: Boundary eigensolution;Steklov eigenproblems;The boundary integral equation method/boundary element method;Degenerate kernel 日期: 2020-05 上傳時間: 2020-06-18 12:10:14 (UTC+8) 摘要: The theory of boundary eigensolutions is developed for boundary value problems. It is general for boundary value problem. Steklov-Poincaré operator maps the values of a boundary condition of the solution of the Laplace equation in a domain to the values of another boundary condition. The eigenvalue is imbedded in the Dirichlet to Neumann (DtN) map. The DtN operator is called the Steklov operator. In this paper, we study the Steklov eigenproblems by using the dual boundary element method/boundary integral equation method (BEM/BIEM). First, we consider a circular domain. To analytically derive the eigensolution of the above shape, the closed-form fundamental solution of the 2D Laplace equation, ln(r), is expanded into degenerate kernel by using the polar coordinate system. After the boundary element discretization of the BIE for the Steklov eigenproblem, it can be transformed to a standard linear eigenequation. Problems can be effectively solved by using the dual BEM. Finally, we consider the annulus. Not only the Steklov problem but also the mixed Steklov eigenproblem for an annular domain has been considered. 關聯: Engineering Analysis with Boundary Elements 114, p.136-147 DOI: 10.1016/j.enganabound.2020.02.005 顯示於類別: [土木工程學系暨研究所] 期刊論文

index.html0KbHTML104檢視/開啟

 TAIR相關文章