English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57615/91160 (63%)
造访人次 : 13559696      在线人数 : 129
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118783


    题名: Analytical and numerical studies for solving Steklov eigenproblems by using the boundary integral equation method / boundary element method
    作者: Chen, Jeng-Tzong;Lee, Jia-Wei;Lien, Kuen-Ting
    关键词: Boundary eigensolution;Steklov eigenproblems;The boundary integral equation method/boundary element method;Degenerate kernel
    日期: 2020-05
    上传时间: 2020-06-18 12:10:14 (UTC+8)
    摘要: The theory of boundary eigensolutions is developed for boundary value problems. It is general for boundary value problem. Steklov-Poincaré operator maps the values of a boundary condition of the solution of the Laplace equation in a domain to the values of another boundary condition. The eigenvalue is imbedded in the Dirichlet to Neumann (DtN) map. The DtN operator is called the Steklov operator. In this paper, we study the Steklov eigenproblems by using the dual boundary element method/boundary integral equation method (BEM/BIEM). First, we consider a circular domain. To analytically derive the eigensolution of the above shape, the closed-form fundamental solution of the 2D Laplace equation, ln(r), is expanded into degenerate kernel by using the polar coordinate system. After the boundary element discretization of the BIE for the Steklov eigenproblem, it can be transformed to a standard linear eigenequation. Problems can be effectively solved by using the dual BEM. Finally, we consider the annulus. Not only the Steklov problem but also the mixed Steklov eigenproblem for an annular domain has been considered.
    關聯: Engineering Analysis with Boundary Elements 114, p.136-147
    DOI: 10.1016/j.enganabound.2020.02.005
    显示于类别:[土木工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML30检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈