English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62394/95090 (66%)
造訪人次 : 2314035      線上人數 : 173
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118761

    題名: Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel
    作者: Ei, Shin-Ichiro;Guo, Jong-Shenq;Ishii, Hiroshi;Wu, Chin-Chin
    關鍵詞: Traveling wave;Wave speed;Nonlocal equation;Sign-changing kernel
    日期: 2020-07-15
    上傳時間: 2020-06-04 12:10:20 (UTC+8)
    出版者: Academic Press
    摘要: In this paper, we study the existence of traveling wave solutions connecting two constant states to a nonlocal scalar equation with sign-changing kernel. A typical example of such kernel in the neural fields is the Mexican hat type function. We first introduce a new notion of upper-lower-solution for the equation of wave profile for a given wave speed. Then, with the help of Schauder's fixed point theorem, we construct two different pairs of upper-lower-solutions to obtain traveling waves for a continuum of wave speeds under two different assumptions. Due to the sign-changing nature of the kernel, the wave profiles may take both positive and negative values. Finally, we analyze the limit of the right-hand tail of wave profiles. Under some further condition on the wave speeds, we prove that the right-hand tail limit of the wave profile does exist. In particular, we obtain the existence of nonnegative traveling waves connecting the unstable state 0 and the stable state 1 for wave speeds large enough.
    關聯: Journal of Mathematical Analysis and Applications 487(2), 124007
    DOI: 10.1016/j.jmaa.2020.124007
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋