English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58210/91779 (63%)
造访人次 : 13775607      在线人数 : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118761

    题名: Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel
    作者: Ei, Shin-Ichiro;Guo, Jong-Shenq;Ishii, Hiroshi;Wu, Chin-Chin
    关键词: Traveling wave;Wave speed;Nonlocal equation;Sign-changing kernel
    日期: 2020-07-15
    上传时间: 2020-06-04 12:10:20 (UTC+8)
    出版者: Academic Press
    摘要: In this paper, we study the existence of traveling wave solutions connecting two constant states to a nonlocal scalar equation with sign-changing kernel. A typical example of such kernel in the neural fields is the Mexican hat type function. We first introduce a new notion of upper-lower-solution for the equation of wave profile for a given wave speed. Then, with the help of Schauder's fixed point theorem, we construct two different pairs of upper-lower-solutions to obtain traveling waves for a continuum of wave speeds under two different assumptions. Due to the sign-changing nature of the kernel, the wave profiles may take both positive and negative values. Finally, we analyze the limit of the right-hand tail of wave profiles. Under some further condition on the wave speeds, we prove that the right-hand tail limit of the wave profile does exist. In particular, we obtain the existence of nonnegative traveling waves connecting the unstable state 0 and the stable state 1 for wave speeds large enough.
    關聯: Journal of Mathematical Analysis and Applications 487(2), 124007
    DOI: 10.1016/j.jmaa.2020.124007
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈