English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3993147      在线人数 : 285
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118699


    题名: Plasmonic nanoparticles: plasmon-enhanced electrocatalytic properties of rationally designed hybrid nanostructures at a catalytic interface
    作者: Lee, J. E.;Mota, F. M.;Choi, C. H.;Lu, Y. R.;Boppella, R.;Dong, C. L.;Liu, R. S.;Kim, D. H.
    日期: 2019-01-22
    上传时间: 2020-06-01 12:14:21 (UTC+8)
    摘要: In recent years, a promising role of plasmonic metal nanoparticles (NPs) has been demonstrated toward an improvement of the catalytic efficiency of well‐designed hybrid electrocatalysts. In particular, the coupling of plasmonic functionality with the metal‐based core–shell architectures in plasmon‐enhanced electrocatalysis provides a sustainable route to improve the catalytic performances of the catalysts. Herein, the rationally designed AuNPs wrapped with reduced graphene oxide (rGO) spacer along with PdNPs (AuNP@rGO@Pd) as the final composite are reported. The rGO is proposed to promote the reduction of PdO, greatly enhance the conductivity, and catalytic activity of these nanohybrid structures. The plasmon‐enhanced electrocatalytic performance of optimized AuNP@rGO(1)@Pd exhibits an ≈1.9‐ and 1.1‐fold enhanced activity for the hydrogen evolution reaction and oxygen evolution reaction, respectively. The final composite also exhibits a superior stability up to 10000 s compared with the commercial Pd/C. The mechanism of the enhanced catalytic performance is monitored through in situ X‐ray absorption spectroscopy by observing the generated electron density under light irradiation. The results demonstrate that the energetic charge carriers are concentrated in the incorporated PdNPs, allowing higher catalytic performances for the overall water‐splitting reaction. The conclusions herein drawn are expected to shed light on upcoming plasmon‐induced electrocatalytic studies with analogous hybrid nanoarchitectures.
    關聯: Advanced Materials Interfaces 6(2), 1801144
    DOI: 10.1002/admi.201970011
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML51检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈