淡江大學機構典藏

Menu Search
查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118683


    題名: Defects-induced in-plane heterophase in cobalt oxide nanosheets for oxygen evolution reaction
    作者: Z. Liu;Z. Xiao;G. Luo;R. Chen;C. L. Dong;X. Chen;J. Cen;H. Yang;Y. Wang;D. Su;Y. Li;S. Wang
    關鍵詞: atomic arrangement engineering;electrocatalysis;interfacial charge transfer;oxygen evolution reaction;phase evolution
    日期: 2019-11-14
    上傳時間: 2020-06-01 12:13:16 (UTC+8)
    摘要: Cobalt oxides as efficient oxygen evolution reaction (OER) electrocatalysts have received much attention because of their rich reserves and cheap cost. There are two common cobalt oxides, Co3O4 (spinel phase, stable but poor intrinsic activity) and CoO (rocksalt phase, active but easily be oxidatized). Constructing Co3O4/CoO heterophase can inherit both characteristic features of each component and form a heterophase interface facilitating charge transfer, which is believed to be an effective strategy in designing excellent electrocatalysts. Herein, an atomic arrangement engineering strategy is applied to improve electrocatalytic activity of Co3O4 for the OER. With the presence of oxygen vacancies, cobalt atoms at tetrahedral sites in Co3O4 can more easily diffuse into interstitial octahedral sites to form CoO phase structure as revealed by periodic density functional theory computations. The Co3O4/CoO spinel/rocksalt heterophase can be in situ fabricated at the atomic scale in plane. The overpotential to reach 10 mA cm−2 of Co3O4/CoO is 1.532 V, which is 92 mV smaller than that of Co3O4. Theoretical calculations confirm that the excellent electrochemical activity is corresponding to a decline in average p ‐state energy of adsorbed‐O on the Co3O4/CoO heterophase interface. The reaction Gibbs energy barrier has been significantly decreased with the construction of the heterophase interface.
    關聯: Small 15(50), 1904903
    DOI: 10.1002/smll.201904903
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML174檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋