English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56829/90592 (63%)
造访人次 : 12143895      在线人数 : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118660


    题名: Prediction Interval of the Future Observations of the two-parameter Exponential distribution under Multiply Type II Censoring
    作者: Wu, S. F.
    关键词: Type II multiply censored sample;Exponential distribution;General weighted moments estimator;Prediction interval
    日期: 2019-08
    上传时间: 2020-06-01 12:11:52 (UTC+8)
    摘要: Wu utilized the general weighted moments estimator (GWMEs) of the
    scale parameter of the one-parameter exponential distribution to construct the prediction
    intervals of the future observations under multiply type II censoring. Since two-parameter
    exponential distribution has better application for fitting data than one-parameter exponential distribution, Wu proposed the general weighted moments estimator (GWMEs)
    of the scale parameter for two-parameter exponential distribution and claimed that the
    proposed estimator outperforms the other 14 estimators including 12 weighted moments
    estimators proposed by Wu and Yang and approximate maximum likelihood estimator
    (AMLE) by Balakrishnan and the best linear unbiased estimator (BLUE) by Balasubramanian and Balakrishnan in terms of the exact mean squared errors (MSEs) in most
    cases. For two-parameter exponential distribution, we use the GWMEs to construct the
    pivotal quantities for the use of the prediction intervals of future observation. At last, one
    real life example is given to demonstrate the prediction intervals based on the GWMEs.
    關聯: ICIC Express Letters 13(11), p.1073-1077
    DOI: 10.24507/icicel.13.11.1073
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML12检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈