English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57042/90725 (63%)
造访人次 : 12436405      在线人数 : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118566


    题名: 運用生物群體行動模型預測並引導網路社群之發展動態
    其它题名: Predicting and Guiding the Dynamics of Network Community by Using Animal Flocking Model
    作者: 張昭憲
    关键词: 影響力預測;生物群體行動模型;社群動態引導;網路社群
    日期: 2018-10-29
    上传时间: 2020-04-11 12:11:48 (UTC+8)
    摘要: 網路社群的蓬勃發展有目共睹,無論是Facebook 或Tweeter 等一般性社群,還是如LinkedIn 之專業社群, 都已成為現代人生活的一部分。人類使用者以虛擬身分在社群平台接收、傳送訊息,進而產生觀念轉變,甚 至觸發實際行為(如購物、遊行等)。社群成員間雖能相互影響,但有程度之別。具有高影響力的社群成員,甚 至能創造社群規範,讓其他多數成員來遵守。然而,網路社群成員的背景非常複雜,對議題的討論動向難以 預測,過程中更可能因突發事件產生重大變化。因此,如何運用社群中具有影響力的領導者,以系統化方式 引導討論方向,對於市場行銷、政策推行、選舉等領域,具有高度實用性。針對此重要課題,本計畫將循以 下重點,發展有效的社群討論動向引導與預測方法: (1)運用生物群體行動模型(animal flocking model)模擬社群 討論動向,並進行必要的轉換,以符合網路社群之應用情境;(2) 探討在何處(where)、何時(when),及如何(how) 運用有影響力的使用者,才能充分發揮引導社群討論方向的效果;(3) 運用深度學習技術,組合各種與影響力 相關的特徵屬性,產生更準確之影響力預測模型,提升引導效能。完成上述工作後,本計畫將使用實際與合 成資料進行實驗,驗證發展方法之有效性與實用性。
    显示于类别:[資訊管理學系暨研究所] 研究報告

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML11检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈