English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9526483      線上人數 : 9333
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118526


    題名: The Study of Etching on GaN Epitaxial Layer by Acid Solution
    其他題名: 酸性溶液在氮化鎵磊晶層上蝕刻行為之研究
    作者: CHAO, Szu-Han;HSU, Shih-Chieh
    關鍵詞: 氮化鎵;濕式蝕刻;硫酸;硫磷酸;磷酸;GaN;wet etching;acid solution;H2SO4;H3PO4
    日期: 2019-12-28
    上傳時間: 2020-04-09 12:12:03 (UTC+8)
    摘要: This study aims at investigating the etching methods of acid solution to GaN epitaxial layer. It produced the surface roughening GaN structure by the GaN epitaxial layer on the sapphire which was etched by three different acid solutions, which were H2SO4, H3PO4, and H2SO4+H3PO4 (HH). The researcher investigated the influence of different time and etching etchant to surface morphology and etching depth and used SEM, AFM, and XPS to analyze the samples after etching.
    The results show that the choice of different acid solutions will produce different etching morphologies. Under the H2SO4 etching, the thickness of the GaN epitaxial layer does not change significantly, but the pits of the inverted hexagonal pyramid are generated on the surface, and expand and combine with time, finally remain on the etched surface(101 ̅5 ̅); Under the H3PO4 etching, the thickness of the GaN epitaxial layer decreases with time, and the etch pit will change from inverted hexagonal pyramid to hexagonal prism over time, and the pits will be combined with each other, and the size of the pit and the depth will increase with time; Under the HH etching, the thickness of the GaN epitaxial layer decreases with time, and the etch pit will change from inverted hexagonal to dodecagonal pyramid over time, and finally maintained at an angle of about 9.3°. These etching pits are generated because of the dislocation. When GaN is growth on the sapphire substrate, A lattice mismatch between the two causes dislocation, and the acidic solution begins to etch and create pits from these defects.
    For the product, the peak of Ga-OEx can be found to increase, and a characteristic peak of a sulfide is generated at 169.1 eV, corresponding product Ga2(SO4)3; in the experimental group of H2SO4 etching; in the H3PO4 experiment, the bonding peak of O 1s and P 2p was found to rise after etching, and it was confirmed that phosphate may be the main cause of etching; In the HH experiment, there was no significant difference in the bonding energy after the reaction, so no product was found on the surface of the sample.
    顯示於類別:[化學工程與材料工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML240檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋