English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58237/91808 (63%)
造訪人次 : 13788899      線上人數 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118386

    題名: Signed mahonian identities on permutations with subsequence restrictions
    作者: Eu, Sen-Peng;Fu, Tung-Shan;Hsu, Hsiang-Chun;Liao, Hsin-Chieh;Sun, Wei-Liang
    關鍵詞: Signed major index;Equidistribution;Permutations with subsequence restrictions;Linear extensions;Pattern avoiding permutations;Insertion lemma
    日期: 2020-02
    上傳時間: 2020-03-24 12:10:18 (UTC+8)
    摘要: In this paper, we present a number of results surrounding Caselli's conjecture on the equidistribution of the major index with sign over the two subsets of permutations of {1, 2, . . . , n} containing respectively the word 1 2 · · · k and the word (n − k + 1)· · · n as a subsequence, under a parity condition of n and k. We derive broader bijective results on permutations containing varied subsequences. As a consequence, we obtain the signed mahonian identities on families of restricted permutations, in the spirit of a well-known formula of Gessel and Simion, covering a combinatorial proof of Caselli’s conjecture. We also derive an extension of the insertion lemma of Haglund, Loehr, and Remmel which allows us to obtain a signed enumerator of the major-index increments resulting from the insertion of a pair of consecutive numbers in any place of a given permutation.
    關聯: Journal of Combinatorial Theory Series A 170, 105131
    DOI: 10.1016/j.jcta.2019.105131
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋