淡江大學機構典藏:Item 987654321/118338
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4021482      在线人数 : 1010
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118338


    题名: 基於頻繁項目集之增量協同過濾推薦
    作者: 陳以錚;惠霖;王英宏;劉瀜潞;陳瑄莉
    关键词: 增量式頻繁項目集探勘;規範序列樹;協同過濾;推薦系統
    日期: 2018-11
    上传时间: 2020-03-19 12:11:08 (UTC+8)
    摘要: 近年來「推薦系統」的技術越來越蓬勃發展,透過協同過濾的方式,根據用戶的興趣或購買行為,對物品的「評分」或「偏好」,向用戶進行推薦,此技術也廣泛應用在各個領域,例如:電影、書籍、美食…等。傳統的協同過濾是透過用戶相似的偏好,去預測你個人的偏好,進一步把其他跟你相似的人所喜愛的物品推薦給你,達到個人化的推薦效果。然而,對於新進的用戶,該如何進行有效的推薦,是一個值得思索的問題。因此本研究運用使用者對電影的喜好,透過樹的建構,將每筆數據依序插入樹中。當找出頻繁項目集後,再利用協同過濾,找出相似的使用者,進一步去做推薦。本文也將對於新使用者的加入,透過增量式挖掘,將採用規範序列樹Canonical-order tree (Can Tree)方法,將數據庫的數據都儲存於Can Tree中,再以FP-growth的方式對Can Tree進行探勘,找出頻繁項目集。接著利用協同過濾的方式,計算使用者之間的相似性,找出要對使用者推薦的項目集清單,最後使用預測函數進行推薦。
    關聯: TANET2018 臺灣網際網路研討會,頁482 - 487
    DOI: 10.6861/TANET.201810.0092
    显示于类别:[資訊創新與科技學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML82检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈