淡江大學機構典藏:Item 987654321/118303
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3983849      線上人數 : 460
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118303


    題名: AI-based design of urban stormwater detention facilities accounting for carryover storage
    作者: Yang, Shun-Nien;Chang, Li-Chiu;Chang, Fi-John
    關鍵詞: Real-time urban flood control;Flood risk mitigation;Pump operation rules;Multi-objective optimization;Non-dominated sorting genetic algorithm-II (NSGA-II)
    日期: 2019-08
    上傳時間: 2020-03-16 12:10:24 (UTC+8)
    摘要: Rapid urbanization in metropolitan areas easily triggers flashy floods. Urban drainage systems conveying stormwater out of cities are key infrastructure elements for flood mitigation. This study develops an intelligent urban flood drainage system accounting for carryover storage through optimizing the multi-objective operation rules of pumping stations for effectual flood management in Taipei City. The Yu-Cheng pumping station constitutes the study case, and a large number of datasets collected from 17 typhoon/storm events are adopted for model construction and validation. Three objective functions are designed to minimize: (1) the sum of water level fluctuations in the flood storage pond (FSP); (2) the sum of peak FSP water levels; and (3) the mean absolute difference of pump switches between two consecutive times along operation sequence. The non-dominated sorting genetic algorithm II (NSGA-II) is applied to searching the Pareto-optimal solutions that optimize the trade-off between the objectives. We next formulate the optimal operation rules through a two-tier sorting process based on a compromised Pareto-optimal solution. The comparison of the simulated results obtained from both the optimal operation rules and current operation rules indicate that the optimal operation rules outperform current operation rules for all three objectives, with improvement rates reaching 43% (OBJ1), 3% (OBJ2) and 71% (OBJ3), respectively. We demonstrate that the derived intelligent urban flood drainage system can serve as reliable and efficient operational strategies for urban flood management and flood risk mitigation.
    關聯: Journal of Hydrology 575, p.1111-1122
    DOI: 10.1016/j.jhydrol.2019.06.009
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    AI-based design of urban stormwater detention facilities accounting for carryover storage.pdf3434KbAdobe PDF1檢視/開啟
    index.html0KbHTML190檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋