淡江大學機構典藏:Item 987654321/118257
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93527 (65%)
造访人次 : 1496590      在线人数 : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118257


    题名: Enhanced Attack Blocking in IoT Environments: Engaging Honeypots and Machine Learning in SDN OpenFlow Switches
    作者: Po-Jen Chuang;Tzu-Chao Hung
    关键词: Internet of Things (IoT);Software Defined Network (SDN);Intrusion Detection System (IDS);Flow Table;Honeypot;Machine Learning;Anomaly Detection;Distributed Denial of Services (DDoS)
    日期: 2020-03
    上传时间: 2020-03-12 12:10:50 (UTC+8)
    摘要: This paper introduces a new attack blocking mechanism to defend against malicious unknown
    attacks in the Internet of Things (IoT) environments. The new mechanism starts by installing a
    honeypot in each Software Defined Network OpenFlow switch to attract and collect suspicious traffic.
    Upon detecting suspicious traffic, it will first store the traffic in the honeypot first, instead of
    performing instant anomaly detection, to preserve the overall network speed and packets. The
    mechanism then sends the collected attack traffic to the controller, to extract more appropriate features
    by the machine learning practice and to ensure more accurate anomaly identification. After identifying
    the attack type, it will add a proper defense rule in the flow table – a new entry – to block similar future
    attacks. Experimental evaluation proves that the new mechanism is more advantageous than the
    existing flow-based IDS mechanism. Major advantages include being able to detect and prevent
    unknown attacks without blocking regular network traffic, achieve better capture rates than the
    Intrusion Detection System (IDS) upon traffic-high or short packet attacks, and avoid potential packet
    loss.
    關聯: Journal of Applied Science and Engineering 23(1), p.163-173
    DOI: 10.6180/jase.202003_23(1).0017
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML81检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈