淡江大學機構典藏:Item 987654321/118220
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57970/91504 (63%)
造訪人次 : 13686098      線上人數 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118220


    題名: Prediction of Chronic Kidney Disease Stages by Renal Ultrasound Imaging
    作者: Chen, Chi-Jim;Pai, Tun-Wen;Hsu, Hui-Huang;Lee, Chien-Hung;Chen, Kuo-Su;Chen, Yung-Chih
    關鍵詞: Ultrasonography;support vector machine;feature extraction;chronic kidney disease;estimated glomerular filtration rate(eGFR)
    日期: 2020-01
    上傳時間: 2020-03-09 12:10:13 (UTC+8)
    摘要: To detect chronic kidney disease (CKD) at earlier stages, diagnosis through non-invasive ultrasonographic imaging techniques provides an auxiliary clinical approach for at-risk CKD patients. We have established a detection method based on imaging processing techniques and machine learning approaches for the diagnosis of different CKD stages. Decisive area-proportional and textural features and support-vector-machine techniques were applied for efficient and effective analyses. Several clustered collections of CKD patients were evaluated and compared according to the estimated glomerular filtration rates. Based on the findings of evolving changes from ultrasound images, the proposed approach could be used as complementary evidences to help differentiate between different clinical diagnoses.
    關聯: Enterprise Information Systems 14(2), p.178-195
    DOI: 10.1080/17517575.2019.1597386
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML85檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋