淡江大學機構典藏:Item 987654321/118204
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56562/90363 (63%)
造訪人次 : 11863726      線上人數 : 86
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118204


    題名: A study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problems
    作者: J. T. Chen;Y. T. Lee;J. W. Lee;S. K. Chen
    關鍵詞: Boundary element method;2D elasticity problem;degenerate scale;characteristic length
    日期: 2020-02-19
    上傳時間: 2020-03-07 12:11:18 (UTC+8)
    摘要: The influence matrix may be of deficient rank in the specified scale when we have solved the 2D elasticity problem by using the boundary element method (BEM). This problem stems from lnr in the 2D Kelvin solution. On the other hand, the single-layer integral operator can not represent the constant term for the degenerate scale in the boundary integral equation method (BIEM). To overcome this problem, we have proposed the enriched fundamental solution containing an adaptive characteristic length to ensure that the argument in the logarithmic function is dimensionless. The adaptive characteristic length, depending on the domain, differs from the constant base by adding a rigid body mode. In the analytical study, the degenerate kernel for the fundamental solution in polar coordinates is revisited. An adaptive characteristic length analytically provides the deficient constant term of the ordinary 2D Kelvin solution. In numerical implementation, adaptive characteristic lengths of the circular boundary, the regular triangular boundary and the elliptical boundary demonstrate the feasibility of the method. By employing the enriched fundamental solution in the BEM/BIEM, the results show the degenerate scale free.
    關聯: Journal of the Chinese Institute of Engineers
    DOI: 10.1080/02533839.2020.1721333
    顯示於類別:[土木工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML25檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋