English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56378/90242 (62%)
造访人次 : 11682555      在线人数 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/118204

    题名: A study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problems
    作者: J. T. Chen;Y. T. Lee;J. W. Lee;S. K. Chen
    关键词: Boundary element method;2D elasticity problem;degenerate scale;characteristic length
    日期: 2020-02-19
    上传时间: 2020-03-07 12:11:18 (UTC+8)
    摘要: The influence matrix may be of deficient rank in the specified scale when we have solved the 2D elasticity problem by using the boundary element method (BEM). This problem stems from lnr in the 2D Kelvin solution. On the other hand, the single-layer integral operator can not represent the constant term for the degenerate scale in the boundary integral equation method (BIEM). To overcome this problem, we have proposed the enriched fundamental solution containing an adaptive characteristic length to ensure that the argument in the logarithmic function is dimensionless. The adaptive characteristic length, depending on the domain, differs from the constant base by adding a rigid body mode. In the analytical study, the degenerate kernel for the fundamental solution in polar coordinates is revisited. An adaptive characteristic length analytically provides the deficient constant term of the ordinary 2D Kelvin solution. In numerical implementation, adaptive characteristic lengths of the circular boundary, the regular triangular boundary and the elliptical boundary demonstrate the feasibility of the method. By employing the enriched fundamental solution in the BEM/BIEM, the results show the degenerate scale free.
    關聯: Journal of the Chinese Institute of Engineers
    DOI: 10.1080/02533839.2020.1721333
    显示于类别:[土木工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈