English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 61875/94645 (65%)
造访人次 : 1635262      在线人数 : 16
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118162

    题名: A Partial Page Cache Strategy for NVRAM-Based Storage Devices
    作者: Shuo-Han Chen;Tseng-Yi Chen;Yuan-Hao Chang;Hsin-Wen Wei;Wei-Kuan Shih
    关键词: Random access memory;Nonvolatile memory;Memory management;Performance evaluation;Embedded systems;Phase change materials
    日期: 2020-02
    上传时间: 2020-03-05 12:10:38 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers
    摘要: Nonvolatile random access memory (NVRAM) is becoming a popular alternative as the memory and storage medium in battery-powered embedded systems because of its fast read/write performance, byte-addressability, and nonvolatility. A well-known example is phase-change memory (PCM) that has much longer life expectancy and faster access performance than NAND flash. When NVRAM is considered as both main memory and storage in battery-powered embedded systems, existing page cache mechanisms have too many unnecessary data movements between main memory and storage. To tackle this issue, we propose the concept of “union page cache,” to jointly manage data of the page cache in both main memory and storage. To realize this concept, we design a partial page cache strategy that considers both main memory and storage as its management space. This strategy can eliminate unnecessary data movements between main memory and storage without sacrificing the data integrity of file systems. A series of experiments was conducted on an embedded platform. The results show that the proposed strategy can improve the file accessing performance up to 85.62% when PCM used as a case study.
    關聯: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39(2), p.373-386
    DOI: 10.1109/TCAD.2018.2887045
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈