English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62567/95223 (66%)
造訪人次 : 2523322      線上人數 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/118151

    題名: Real-Time Multi-Scale Parallel Compressive Tracking
    作者: Tsai, Chi-Yi;Feng, Yen-Chang
    關鍵詞: Robust visual tracking;Compressive tracking;Multi-scale classification;Parallel processing;Algorithmic acceleration
    日期: 2017-08-31
    上傳時間: 2020-03-03 12:10:18 (UTC+8)
    出版者: Springer Berlin Heidelberg
    摘要: Robust visual tracking is a challenging problem because the appearance of a target may rapidly change due to significant variations in the object’s motion and the surrounding illumination. In this paper, a novel robust visual tracking algorithm is proposed based on an existing compressive tracking method. The proposed algorithm adopts multiple naive Bayes classifiers, each trained under a different scale condition, to realize online parallel multi-scale classification. Further, each classifier was initialized by randomly generating different types of Haar-like features. By doing so, the robustness of the feature classification can be improved to obtain more accurate tracking results. To enhance the real-time performance of the visual tracking system, the formula of the naive Bayes classifier is studied and simplified to speed up the processing speed of parallel multi-scale feature classification. After acceleration via formula simplification and parallel implementation, the proposed visual tracking algorithm can reach a tracking performance of approximately 45 frames per second (fps) when dealing with images of 642 × 352 pixels on a popular Intel Core i5-3230M platform. The experimental results show that the proposed algorithm outperforms state-of-the-art visual tracking methods on challenging videos in terms of success rate, tracking accuracy, and visual comparison.
    關聯: Journal of Real-Time Image Processing 16(6), p.2073-2091
    DOI: 10.1007/s11554-017-0713-4
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋