English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1046368      在线人数 : 24
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117918


    题名: An Eigen-based Matrix Inverse Approximation Scheme with Stair Matrix Splitting for Massive MIMO Systems
    作者: Phil Chia-Yang Tsai;Kelvin Kuang-Chi Lee;Chiao-En Chen
    关键词: Massive MIMO;NS expansion;eigen-based MIA;stair matrix splitting
    日期: 2018-11-27
    上传时间: 2019-12-24 12:10:50 (UTC+8)
    出版者: IEEE
    摘要: Approximative matrix inversion (MIA) has been extensively researched with the aim of addressing the complexity issues encountered by Zero-forcing (ZF) precoder design in massive multiple-input multiple-output (MIMO) systems. The eigen-based MIA scheme with diagonal matrix splitting is presented recently where additional coefficients can be designed and optimized to improve MIA accuracy and bit-error-rate (BER) compared to the well-known Neumann series expansion (NS) or Newton iteration (NI) framework for Rayleigh flat fading channel, regardless the presence of transmit antenna correlation or not. In this paper, stair matrix splitting is proposed for the eigen-based MIA method for uncorrelated Rayleigh flat fading channel. Simulation result shows that, with additional information in the inverse of stair matrix, both the ZF precoder approximation precision and BER can be enhanced compared to the diagonal matrix splitting scenarios without sacrificing complexity.
    關聯: 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML24检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈