淡江大學機構典藏:Item 987654321/117841
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57310/90918 (63%)
造访人次 : 13017941      在线人数 : 231
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/117841


    题名: Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel
    作者: Jyh-Ping Hsu;Tzu-Chiao Su;Po-Hsien Peng;Shih-Chieh Hsu;Min-Jie Zheng;Li-Hsien Yeh
    关键词: nanofluidics;asymmetric nanopore;ion current rectification;salinity gradient power;charge regulation
    日期: 2019-10-22
    上传时间: 2019-11-26 12:10:23 (UTC+8)
    出版者: American Chemical Society
    摘要: Nanofluidic osmotic power, which converts a difference in salinity between brine and fresh water into electricity with nanoscale channels, has received more and more attention in recent years. It is long believed that to gain high-performance osmotic power, highly charged channel materials should be exploited so as to enhance the ion selectivity. In this paper, we report counterintuitive surface-charge-density-dependent osmotic power in a single funnel-shaped nanochannel (FSN), violating the previous viewpoint. For the highly charged nanochannel, the performance of osmotic power decreases with a further increase in its surface charge density. With increasing pH (surface charge density), the FSN enables a local maximum power density as high as ∼3.5 kW/m2 in a 500 mM/1 mM KCl gradient. This observation is strongly supported by our rigorous model where the equilibrium chemical reaction between functional carboxylate ion groups on the channel wall and protons is taken into account. The modeling reveals that for a highly charged nanochannel, a significant increase in the surface charge density amplifies the ion concentration polarization effect, thus weakening the effective salinity ratio across the channel and undermining the osmotic power generated.
    關聯: ACS Nano 13(11), p.13374–13381
    DOI: 10.1021/acsnano.9b06774
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML38检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈