淡江大學機構典藏:Item 987654321/117768
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3946828      在线人数 : 546
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117768


    题名: 從社群媒體挖掘以感測日常交通之主觀幸福感
    其它题名: Social Media Mining to Sense Daily Transportation Subjective Well-Being
    作者: 陶治中
    日期: 2018-10-30
    上传时间: 2019-11-06 12:10:43 (UTC+8)
    摘要: 本研究認為要提升交通運輸服務的使用狀況,除了對服務屬性滿意度進行調查之外,首先應藉由系 統性回顧國內外對於交通主觀幸福感之研究,包含日常旅運行為與主觀幸福感關聯的相關文獻,並利 用主觀幸福感的要素對日常交通服務的主觀幸福感內涵進行探討,以形成理論模型基礎並從相關理論 當中發展量測工具,以此對於使用者是否滿足日常旅運活動需求、獲得交通主觀幸福感之相關影響因 子進行深入探討。其次為運用社群運算的概念,對使用者於社群媒體上的活動資料進行使用者行為分 析,並將日常旅運活動行為與交通主觀幸福感兩者,藉由發展適合之機器學習演算法驗證其關聯,以 獲得在社群媒體中的日常交通主觀幸福感模型,補強原有僅探討運輸服務屬性滿意度的不足之處,以 提供更有效益且更貼近交通使用者需求及主觀幸福感之分析工具。
    Subjective Well-being (SWB), which refers to how people experience the quality of their lives, is of great use to public policy-makers as well as economic, sociological research, etc. Traditionally, the measurement of SWB relies on time-consuming and costly self-report questionnaires. Nowadays, people are motivated to share their experiences and feelings on social media, so we propose to sense SWB from the vast user generated daily travel data on social media. By utilizing users’ social media data with SWB labels, we train machine learning models that are able to “sense” individual SWB. Our proposed model, which attains the state-of-the-art prediction accuracy, can then be applied to identify large amount of social media users’ SWB in time with low cost. The proposed models, which attain the state-of-the-art prediction standard, have equivalent utility with well-designed psychological scales. This approach of psychological assessment, can predict one's daily travel SWB by automatically by analyzing his/her social media data in a non-invasive manner, and makes it feasible to assess users' psychological features, in large scale and timely. It is our will that the methods in this study can inspire subsequent research in the area of conventional psychology or social sciences. More empirical analysis on real data, leads to more reliable conclusion, and such conclusion can be used to improve the public welfare.
    關聯: 從社群媒體挖掘以感測日常交通之主觀幸福感
    显示于类别:[運輸管理學系暨研究所] 研究報告

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML143检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈