English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10664560      在线人数 : 15
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/117397


    题名: Residual Learning Based Convolutional Neural Network for Super Resolution
    作者: Lin, Hwei Jen;Tokuyama, Yoshimasa;Lin, Zi-Jun
    关键词: super resolution;convolutional networks;bicubic interpolation;deep learning;underdetermined inverse problem
    日期: 2019-07-07
    上传时间: 2019-10-15 12:11:34 (UTC+8)
    摘要: Recently, there have been many methods of super resolution proposed in the literature, in which convolutional neural networks have been confirmed to achieve good results. C. Dong et al. proposed a convolutional neural network structure (SRCNN) to effectively solve the super resolution problem. J. Kim et al. proposed a much deeper convolutional neural network (VDSR) to improve C. Dong et al.’s method. However, unlike VDSR proposed by J. Kim et al. which trained residue images, SRCNN proposed by C. Dong et al. directly trained high-resolution images. Consequently, we surmise the improvement of VDSR is due to not only to the depth of the neural network structure but also the training of residue images. This paper studies and compares the performance of training high-resolution images and training residue images associated with the two neural network structures, SRCNN and VDSR. Some deep CNNs proceed zero padding which pads the input to each convolutional layer with zeros around the border so the feature maps remain the same size. SRCNN proposed by C. Dong et al. does not carry out padding, so the size of the resulting high-resolution images is smaller than expected. The study also proposes two revised versions of SRCNN that remain the size the same as the input image.
    關聯: Proceedings of 2019 International Electronics Communication Conference
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML27检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈