淡江大學機構典藏:Item 987654321/117365
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64188/96967 (66%)
造访人次 : 11337267      在线人数 : 41
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117365


    题名: Bayesian analysis for lognormal distribution under progressive type-II censoring
    作者: Sukhdev Singh;Yogesh Mani Tripathi;Shuo-Jye Wu
    关键词: equal-tail interval;highest posterior density interval;one-sample prediction;OpenBUGS;two-sample prediction;importance sampling
    日期: 2019-10
    上传时间: 2019-10-10 12:10:53 (UTC+8)
    出版者: DergiPark Akademik
    摘要: In this paper, we consider the problems of Bayesian estimation and prediction for lognormal distribution under progressive Type-II censored data. We propose various non-informative and informative priors for the unknown lognormal parameters and compute the Bayes estimates under squared error loss function. Importance sampling technique and OpenBUGS are taken into consideration for the computational purpose. Further, we predict lifetimes of both censored and future samples under one- and two-sample prediction frameworks. We also compute the corresponding Bayes predictive bounds. A simulation study is conducted to compare the performance of proposed estimates and a real data set is analyzed to illustrate applications of this study. Finally, a conclusion is presented.
    關聯: Hacettepe Journal of Mathematics and Statistics 48(5), p.1488-1504
    DOI: 10.15672/HJMS.2018.643
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Bayesian analysis for lognormal distribution under progressive type-II censoring.pdf317KbAdobe PDF1检视/开启
    index.html0KbHTML89检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈