淡江大學機構典藏:Item 987654321/117206
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3985782      在线人数 : 287
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117206


    题名: Investigation on the Microstructures of Long Fiber and Their Influences on Warpage and Mechanical Property in Injection Reinforced Thermoplastics (FRT) Parts.
    作者: Huang, Chao-Tsai (CT);Hsu, Chia;Hwang, Sheng-Jye;Peng, Hsin-Shu;Wu, Chih-Che;Tu, Chun-I
    关键词: Long Fiber;Warpage;Reinforced Thermoplastics (FRT);Injection molding
    日期: 2019-03-19
    上传时间: 2019-10-03 12:11:15 (UTC+8)
    出版者: Society of Plastics Engineers
    摘要: In recent years, due to its excellent properties, the fiber-reinforced thermoplastics (FRT) material has been applied into industry as one of the major lightweight technologies, especially for automotive or aerospace products. However, due to the microstructures of fiber inside plastic matrix are very complex, they are not easy to be visualized. The connection from microstructures to the final shrinkage/warpage is far from our understanding.
    In this study, we have proposed a benchmark with three standard specimens based on ASTM D638 where those specimens have different gate designs. Due to the geometrical effect, the local warpage behaviors are quite different for those three specimens. Specifically, it causes one specimen warped downward and bended inward, another warped upward, and the other slightly upward at the same time. The local warpage behaviors are validated by experimental study with excellent agreement. Moreover, the fiber length effect on the full warpage behavior was also conducted. When the longer fiber length is introduced, the full model warpage behavior can be reduced. The detailed of the full model warpage behavior has been analyzed side-by-side using both of numerical simulation and experiment. The trend is in a reasonable agreement for both simulation and experiment. Furthermore, the mechanical property variation of the finished parts due to the different fiber length was also investigated. Results showed that when the fiber is reinforced the tensile strength is increased linearly for all Models. However, the tensile strength of the Model I is always better than that of Model II, while Model III is much worse than others due to its double gate effect. The reason why the tensile strength of the Model I is always better than that of Model II could be due to the side-gate structure to provide strong fiber orientation and also more uniform fiber distribution at NGR.
    關聯: Paper 50, p.1-7
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML24检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈