淡江大學機構典藏:Item 987654321/117206
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4031563      Online Users : 1013
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117206


    Title: Investigation on the Microstructures of Long Fiber and Their Influences on Warpage and Mechanical Property in Injection Reinforced Thermoplastics (FRT) Parts.
    Authors: Huang, Chao-Tsai (CT);Hsu, Chia;Hwang, Sheng-Jye;Peng, Hsin-Shu;Wu, Chih-Che;Tu, Chun-I
    Keywords: Long Fiber;Warpage;Reinforced Thermoplastics (FRT);Injection molding
    Date: 2019-03-19
    Issue Date: 2019-10-03 12:11:15 (UTC+8)
    Publisher: Society of Plastics Engineers
    Abstract: In recent years, due to its excellent properties, the fiber-reinforced thermoplastics (FRT) material has been applied into industry as one of the major lightweight technologies, especially for automotive or aerospace products. However, due to the microstructures of fiber inside plastic matrix are very complex, they are not easy to be visualized. The connection from microstructures to the final shrinkage/warpage is far from our understanding.
    In this study, we have proposed a benchmark with three standard specimens based on ASTM D638 where those specimens have different gate designs. Due to the geometrical effect, the local warpage behaviors are quite different for those three specimens. Specifically, it causes one specimen warped downward and bended inward, another warped upward, and the other slightly upward at the same time. The local warpage behaviors are validated by experimental study with excellent agreement. Moreover, the fiber length effect on the full warpage behavior was also conducted. When the longer fiber length is introduced, the full model warpage behavior can be reduced. The detailed of the full model warpage behavior has been analyzed side-by-side using both of numerical simulation and experiment. The trend is in a reasonable agreement for both simulation and experiment. Furthermore, the mechanical property variation of the finished parts due to the different fiber length was also investigated. Results showed that when the fiber is reinforced the tensile strength is increased linearly for all Models. However, the tensile strength of the Model I is always better than that of Model II, while Model III is much worse than others due to its double gate effect. The reason why the tensile strength of the Model I is always better than that of Model II could be due to the side-gate structure to provide strong fiber orientation and also more uniform fiber distribution at NGR.
    Relation: Paper 50, p.1-7
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Journal Article

    Files in This Item:

    File SizeFormat
    index.html0KbHTML24View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback