English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58034/91575 (63%)
造訪人次 : 13721560      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/117206


    題名: Investigation on the Microstructures of Long Fiber and Their Influences on Warpage and Mechanical Property in Injection Reinforced Thermoplastics (FRT) Parts.
    作者: Huang, Chao-Tsai (CT);Hsu, Chia;Hwang, Sheng-Jye;Peng, Hsin-Shu;Wu, Chih-Che;Tu, Chun-I
    關鍵詞: Long Fiber;Warpage;Reinforced Thermoplastics (FRT);Injection molding
    日期: 2019-03-19
    上傳時間: 2019-10-03 12:11:15 (UTC+8)
    出版者: Society of Plastics Engineers
    摘要: In recent years, due to its excellent properties, the fiber-reinforced thermoplastics (FRT) material has been applied into industry as one of the major lightweight technologies, especially for automotive or aerospace products. However, due to the microstructures of fiber inside plastic matrix are very complex, they are not easy to be visualized. The connection from microstructures to the final shrinkage/warpage is far from our understanding.
    In this study, we have proposed a benchmark with three standard specimens based on ASTM D638 where those specimens have different gate designs. Due to the geometrical effect, the local warpage behaviors are quite different for those three specimens. Specifically, it causes one specimen warped downward and bended inward, another warped upward, and the other slightly upward at the same time. The local warpage behaviors are validated by experimental study with excellent agreement. Moreover, the fiber length effect on the full warpage behavior was also conducted. When the longer fiber length is introduced, the full model warpage behavior can be reduced. The detailed of the full model warpage behavior has been analyzed side-by-side using both of numerical simulation and experiment. The trend is in a reasonable agreement for both simulation and experiment. Furthermore, the mechanical property variation of the finished parts due to the different fiber length was also investigated. Results showed that when the fiber is reinforced the tensile strength is increased linearly for all Models. However, the tensile strength of the Model I is always better than that of Model II, while Model III is much worse than others due to its double gate effect. The reason why the tensile strength of the Model I is always better than that of Model II could be due to the side-gate structure to provide strong fiber orientation and also more uniform fiber distribution at NGR.
    關聯: Paper 50, p.1-7
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋