English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10215633      Online Users : 19602
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117205


    Title: Viscoelastic Effect on the Warpage Prediction Accuracy and Experimental Validation in Injection Molding.
    Authors: Huang, Chao-Tsai (CT);Chen, Po-Hsuan;Hsu, Yi-Hsuan;Jong, Wen-Ren;Chang, Rong-Yeu
    Keywords: Viscoelastic;Warpage;Injection molding;CAE simulation
    Date: 2019-03-18
    Issue Date: 2019-10-03 12:11:13 (UTC+8)
    Publisher: Society of Plastics Engineer
    Abstract: Recently, many Internet of Things (IoT) have been proposed and developing to industry and markets. They drive people to design and create an automatic production environment. Before executing automatic production, how to retain good quality for injection products is one of the crucial factors. To retain good quality, it is commonly using CAE to assist from original design to revision and to fabrication. However, even using CAE, it doesn’t guarantee the quality factors obtained from CAE can be applied to real experiments.
    In this study, first we have focused on what the major factors were to cause the difference between CAE simulation and real testing on the warpage quality. We further applied numerical simulation to decouple what the main driving forces are to make the difference. Results showed that in the original process setting, the warpage difference between simulation prediction and experiment is 0.34 mm. We further found out the major difference came from the injection filling response is too slow (delayed about 29%) and packing pressure is insufficient (23% lower) in real experiment comparing to simulation prediction. Moreover, after calibrate the machine response the warpage difference between simulation prediction and experiment is reduced to 0.12 mm. We also studies viscoelastic (VE) effect and found the VE has a great impact on the warpage in this case study. However, the influence of VE is great or not for other cases that should be further investigated.
    Relation: SPE Technical Papers , Paper No. 61, pp 1-5
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback