English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 61875/94645 (65%)
造訪人次 : 1635481      線上人數 : 15
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117144


    題名: Electrostatics, Structure Prediction, and the Energy Landscapes for Protein Folding and Binding
    作者: Tsai, Min-Yeh;Zheng, Weihua;Balamurugan, D;Schafer, Nicholas P;Kim, Bobby L;Cheung, Margaret S;Wolynes, Peter G
    關鍵詞: protein folding;binding;protein−protein interactions;energy landscape theory;long‐range electrostatics;Debye‐Hückel potentials;electrostatically induced frustration
    日期: 2015-07-16
    上傳時間: 2019-09-26 12:11:05 (UTC+8)
    出版者: Wiley
    摘要: While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes.
    關聯: Protein Science, 25(1), 255
    DOI: 10.1002/pro.2751
    顯示於類別:[化學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Electrostatics, Structure Prediction, and the Energy Landscapes for Protein Folding and Binding.pdf2105KbAdobe PDF2檢視/開啟
    index.html0KbHTML63檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋