淡江大學機構典藏:Item 987654321/117041
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62830/95882 (66%)
造訪人次 : 4046667      線上人數 : 824
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117041


    題名: Permeate flux enhancement with roughened-surface flow channel in air gap membrane distillation systems
    作者: Chii-Dong Ho;Luke Chen;Chun-Hsuan Cheng;Tze-Hao Hsu;Jun-Wei Lim
    關鍵詞: Air-gap membrane distillation;Desalination;Relative roughness;Permeate flux;Temperature polarization
    日期: 2018-09-28
    上傳時間: 2019-09-17 12:12:58 (UTC+8)
    出版者: Desalination Publications
    摘要: A new design of the air-gap membrane distillation (AGMD) system for saline water desalination fabricating roughened-surface flow channel for heat transfer enhancement to produce high-purity water
    was investigated theoretically and experimentally. The theoretical predictions demonstrate that the
    AGMD system with roughened surface on the flow channel accomplishes a better device performance
    in pure water productivity compared with smooth-surface flow channel. The roughened-surface
    channel was fabricated using siphoned blasting with aluminum oxide (Al2
    O3
    ) sand grains and arc
    spraying for Ni-film coating. The effect of the relative roughness was correlated with experimental
    data to estimate the heat transfer coefficients. A theoretical model considering both heat and mass
    transfer mechanisms has been developed and solved numerically. The theoretical model predicts
    the permeate flux increased with the inlet volumetric flow rates, inlet saline temperatures and the
    channel roughness. The qualitative and quantitative agreements were found between the numerical
    predictions and the experimental results, and the model was validated with the error analysis and
    the precision index of an individual measurement with the inlet temperature of hot fluid, volumetric
    flow rate and relative roughness as parameters. An 11% permeate flux enhancement was found when
    using roughened-surface flow channel of the AGMD system according to the experimental data. The
    effect of fabricating roughened-surface flow channel on the permeate flux and energy efficiency was
    also evaluated. Correlations of Nusselt number for the smooth channel and channels with fabricating
    roughened-surface flow were obtained using the experimental results and theoretical predictions.
    These correlations indicated that the flow channel using larger relative roughness gives the higher
    permeate flux and energy efficiency than that in the smooth-surface flow channel.
    關聯: Desalination and Water Treatment 136, p.39-48
    DOI: 10.5004/dwt.2018.23235
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML89檢視/開啟
    Permeate flux enhancement with roughened-surface flow channel in air gap membrane distillation systems,.pdf165KbAdobe PDF1檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋