淡江大學機構典藏:Item 987654321/117031
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4132807      Online Users : 676
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/117031


    Title: Electronic, electrical and magnetic behaviours of reduced graphene-oxide functionalized with silica coated gold nanoparticles
    Authors: Pong, W.F.
    Keywords: R-GO;R-GO:Au-NPs;XANES;XPS;M-H;I-V
    Date: 2019-07-31
    Issue Date: 2019-09-17 12:12:29 (UTC+8)
    Abstract: We have synthesized graphene-oxide (GO) by the modified hummer's process and subsequently reduced it with gold-nanoparticles (Au-NPs) using silica coated colloidal Au-NPs and hydrazine monohydrate solutions to form r-GO:Au-NPs nanocomposites. We have studied the microstructure, electronic, electrical and magnetic properties of r-GO and r-GO:Au-NPs nanocomposites. We have observed from the Raman spectroscopy that the intensity of D-peak (disorder) gets reduced with respect to G (graphite-cluster) in r-GO:Au-NPs composites. The reduction of ID/IG ratio obtained from Raman spectra [r-GO: 1.22 → r-GO:(Au-NPs)4.88: 0.98] clearly indicates that the sp2-cluster is reduced in r-GO:Au-NPs nanocomposites. The reduction of sp2-cluster and/or enhancement of sp3-cluster is due to replacement of sp2-cluster by the Au-NPs. This observation also observed from the X-ray absorption near edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy (XPS) measurements that are consistence with reduction of conductivity as we observe from the current (I) - voltage (V) characteristics of the nanocomposites. Magnetic M-H hysteresis loops show the magnetization is enhanced in r-GO:Au-NPs nanocomposites. We believe that the reduction of conductivity and enhancement of magnetization of r-GO:Au nanocomposites would be most suitable for ferro-electro-magnetic materials for the memory storage device applications.
    Relation: Applied Surface Science 483, p.106-113
    DOI: 10.1016/j.apsusc.2019.03.271
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML138View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback