English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57970/91504 (63%)
造訪人次 : 13690995      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/117013

    題名: Using maximal segmental score in genome-wide association studies
    作者: YC, Lin;CL, Hsiao;Hsieh, Ai-Ru;IB, Lian;SJ, Fann Cathy
    關鍵詞: association test;multiple testing;GWAS;maximal segmental score
    日期: 2012-09
    上傳時間: 2019-09-17 12:11:40 (UTC+8)
    出版者: Wiley Periodicals
    摘要: Genome‐wide association studies (GWAS) have become the method of choice for identifying disease susceptibility genes in common disease genetics research. Despite successes in these studies, much of the heritability remains unexplained due to lack of power and low resolution. High‐density genotyping arrays can now screen more than 5 million genetic markers. As a result, multiple comparison has become an important issue especially in the era of next‐generation sequencing. We propose to use a two‐stage maximal segmental score procedure (MSS) which uses region‐specific empirical P‐values to identify genomic segments most likely harboring the disease gene. We develop scoring systems based on Fisher's P‐value combining method to convert locus‐specific significance levels into region‐specific scores. Through simulations, our result indicated that MSS increased the power to detect genetic association as compared with conventional methods provided type I error was at 5%. We demonstrated the application of MSS on a publicly available case‐control dataset of Parkinson's disease and replicated the findings in the literature. MSS provides an efficient exploratory tool for high‐density association data in the current era of next‐generation sequencing. R source codes to implement the MSS procedure are freely available at http://www.csjfann.ibms.sinica.edu.tw/EAG/program/programlist.htm.
    關聯: Genetic epidemiology 36(6), p.594–601
    DOI: 10.1002/gepi.21652
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋