淡江大學機構典藏:Item 987654321/116976
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9305139      Online Users : 231
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116976


    Title: One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes
    Authors: Chien-Kai Wang;Wei-Hao Liao;Hsiao-Mei Wu;Yi-Chung Tung
    Date: 2018-09-13
    Issue Date: 2019-09-13 12:10:25 (UTC+8)
    Abstract: Polydimethylsiloxane (PDMS) materials are substantially exploited to fabricate microfluidic devices by using soft lithography replica molding techniques. Customized channel layout designs are necessary for specific functions and integrated performance of microfluidic devices in numerous biomedical and chemical applications (e.g., cell culture, biosensing, chemical synthesis, and liquid handling). Owing to the nature of molding approaches using silicon wafers with photoresist layers patterned by photolithography as master molds, the microfluidic channels commonly have regular cross sections of rectangular shapes with identical heights. Typically, channels with multiple heights or different geometric sections are designed to possess particular functions and to perform in various microfluidic applications (e.g., hydrophoresis is used for sorting particles and in continuous flows for separating blood cells6 , 7 , 8 , 9). Therefore, a great deal of effort has been made in constructing channels with various sections through multiple-step approaches like photolithography using several photoresist layers and assembly of different PDMS thin sheets. Nevertheless, such multiple-step approaches usually involve tedious procedures and extensive instrumentation. Furthermore, the fabricated devices may not perform consistently and the resulted experimental data may be unpredictable. Here, a one-step approach is developed for the straightforward fabrication of microfluidic channels with different geometric cross sections through PDMS sequential wet etching processes, that introduces etchant into channels of planned single-layer layouts embedded in PDMS materials. Compared to the existing methods for manufacturing PDMS microfluidic channels with different geometries, the developed one-step approach can significantly simplify the process to fabricate channels with non-rectangular sections or various heights. Consequently, the technique is a way of constructing complex microfluidic channels, which provides a fabrication solution for the advancement of innovative microfluidic systems.
    Relation: Journal of Visualized Experiments 139, e57868
    DOI: 10.3791/57868
    Appears in Collections:[Graduate Institute & Department of Civil Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML182View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback