English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54067/88902 (61%)
造访人次 : 10552132      在线人数 : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/116909

    题名: Agent-Based Modeling of a Non-tâtonnement Process for the Scarf Economy: The Role of Learning
    作者: Shu-Heng Chen;Bin-Tzong Chie;Ying-Fang Kao;Ragupathy Venkatachalam
    关键词: Non-tâtonnement process;Coordination;Agent-based modeling;Learning
    日期: 2019-06
    上传时间: 2019-07-02 12:10:15 (UTC+8)
    出版者: Springer
    摘要: In this paper, we propose a meta-learning model to hierarchically integrate individual learning and social learning schemes. This meta-learning model is incorporated into an agent-based model to show that Herbert Scarf’s famous counterexample on Walrasian stability can become stable in some cases under a non-tâtonnement process when both learning schemes are involved, a result previously obtained by Herbert Gintis. However, we find that the stability of the competitive equilibrium depends on how individuals learn—whether they are innovators (individual learners) or imitators (social learners), and their switching frequency (mobility) between the two. We show that this endogenous behavior, apart from the initial population of innovators, is mainly determined by the agents’ intensity of choice. This study grounds the Walrasian competitive equilibrium based on the view of a balanced resource allocation between exploitation and exploration. This balance, achieved through a meta-learning model, is shown to be underpinned by a behavioral/psychological characteristic.
    關聯: Computational Economics 54(1), p.305-341
    DOI: 10.1007/s10614-017-9721-5
    显示于类别:[產業經濟學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈