淡江大學機構典藏:Item 987654321/116768
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10529545      線上人數 : 17930
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116768


    題名: A Dynamic MADM Method for the Selection of a Big Data Service Provider
    作者: Liang Yin;Huan-Jyh Shyur
    關鍵詞: Dynamic decision making;MADM;prospect theory;big data
    日期: 2019-03
    上傳時間: 2019-05-29 12:10:33 (UTC+8)
    出版者: 淡江大學管理科學系
    摘要: The decision making process for selection of a proper Big Data service platform can be
    complex and dynamic. The bidding process can occur multiple times, the assessment criteria
    vary each time and they may conflict with each other. Most existing multiple attribute
    decision-making (MADM) methods are unable to take into account such dynamic process.
    This paper presents a new dynamic decision making method for the selection of a big data
    service provider. The dynamic nature of such process is addressed by means of a feedback
    mechanism. The final decision is taken at the end of a series of exploratory processes.
    The ranking algorithm for the proposed method uses prospect theory to reflect the decision
    maker’s behavior in the face of risk. A case study shows the actual bidding process and proves
    the proposed method is able to guide and support a decision team to efficiently aggregate
    their preferences dynamically.
    關聯: International Journal of Information and Management Sciences 30(1), p.57-71
    DOI: 10.6186/IJIMS.201903_30(1).0004
    顯示於類別:[資訊管理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A Dynamic MADM Method for the Selection of a Big Data Service Provider.pdf316KbAdobe PDF2檢視/開啟
    index.html0KbHTML330檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋