淡江大學機構典藏:Item 987654321/116768
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10526990      在线人数 : 17831
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116768


    题名: A Dynamic MADM Method for the Selection of a Big Data Service Provider
    作者: Liang Yin;Huan-Jyh Shyur
    关键词: Dynamic decision making;MADM;prospect theory;big data
    日期: 2019-03
    上传时间: 2019-05-29 12:10:33 (UTC+8)
    出版者: 淡江大學管理科學系
    摘要: The decision making process for selection of a proper Big Data service platform can be
    complex and dynamic. The bidding process can occur multiple times, the assessment criteria
    vary each time and they may conflict with each other. Most existing multiple attribute
    decision-making (MADM) methods are unable to take into account such dynamic process.
    This paper presents a new dynamic decision making method for the selection of a big data
    service provider. The dynamic nature of such process is addressed by means of a feedback
    mechanism. The final decision is taken at the end of a series of exploratory processes.
    The ranking algorithm for the proposed method uses prospect theory to reflect the decision
    maker’s behavior in the face of risk. A case study shows the actual bidding process and proves
    the proposed method is able to guide and support a decision team to efficiently aggregate
    their preferences dynamically.
    關聯: International Journal of Information and Management Sciences 30(1), p.57-71
    DOI: 10.6186/IJIMS.201903_30(1).0004
    显示于类别:[資訊管理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A Dynamic MADM Method for the Selection of a Big Data Service Provider.pdf316KbAdobe PDF2检视/开启
    index.html0KbHTML330检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈