English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63187/95884 (66%)
造访人次 : 4580819      在线人数 : 293
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116737

    题名: Quantifying the Uncertainty in Optimal Experiment Schemes via Monte-Carlo Simulations
    作者: Ng, HKT;Lin, Y-J;Tsai, Tzong-Ru;Lio, YL;Jiang, N
    关键词: Objective Function;Asymptotic Variance;Fisher Information Matrix;Model Misspecification;Lifetime Distribution
    日期: 2017-02-03
    上传时间: 2019-05-18 12:12:32 (UTC+8)
    出版者: Springer
    摘要: In the process of designing life-testing experiments , experimenters always establish the optimal experiment scheme based on a particular parametric lifetime model. In most applications, the true lifetime model is unknown and need to be specified for the determination of optimal experiment schemes. Misspecification of the lifetime model may lead to a substantial loss of efficiency in the statistical analysis. Moreover, the determination of the optimal experiment scheme is always relying on asymptotic statistical theory. Therefore, the optimal experiment scheme may not be optimal for finite sample cases. This chapter aims to provide a general framework to quantify the sensitivity and uncertainty of the optimal experiment scheme due to misspecification of the lifetime model. For the illustration of the methodology developed here, analytical and Monte-Carlo methods are employed to evaluate the robustness of the optimal experiment scheme for progressive Type-II censored experiment under the location-scale family of distributions.
    關聯: Monte-Carlo Simulation-Based Statistical Modeling
    DOI: 10.1007/978-981-10-3307-0_6
    显示于类别:[統計學系暨研究所] 專書之單篇


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈