English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60861/93527 (65%)
造訪人次 : 1497073      線上人數 : 12
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116737

    題名: Quantifying the Uncertainty in Optimal Experiment Schemes via Monte-Carlo Simulations
    作者: Ng, HKT;Lin, Y-J;Tsai, Tzong-Ru;Lio, YL;Jiang, N
    關鍵詞: Objective Function;Asymptotic Variance;Fisher Information Matrix;Model Misspecification;Lifetime Distribution
    日期: 2017-02-03
    上傳時間: 2019-05-18 12:12:32 (UTC+8)
    出版者: Springer
    摘要: In the process of designing life-testing experiments , experimenters always establish the optimal experiment scheme based on a particular parametric lifetime model. In most applications, the true lifetime model is unknown and need to be specified for the determination of optimal experiment schemes. Misspecification of the lifetime model may lead to a substantial loss of efficiency in the statistical analysis. Moreover, the determination of the optimal experiment scheme is always relying on asymptotic statistical theory. Therefore, the optimal experiment scheme may not be optimal for finite sample cases. This chapter aims to provide a general framework to quantify the sensitivity and uncertainty of the optimal experiment scheme due to misspecification of the lifetime model. For the illustration of the methodology developed here, analytical and Monte-Carlo methods are employed to evaluate the robustness of the optimal experiment scheme for progressive Type-II censored experiment under the location-scale family of distributions.
    關聯: Monte-Carlo Simulation-Based Statistical Modeling
    DOI: 10.1007/978-981-10-3307-0_6
    顯示於類別:[統計學系暨研究所] 專書之單篇


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋