English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56379/90243 (62%)
造訪人次 : 11685848      線上人數 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/116132


    題名: Multi-output support vector machine for regional multi-step-ahead PM2. 5 forecasting
    作者: Yanlai Zhou;Fi-John Chang;Li-Chiu Chang;I-Feng Kao;Yi-Shin Wang;Che-Chia Kang
    關鍵詞: Multi-output SVM;Multi-task learning algorithm;Multi-step-ahead forecast;PM2.5 concentrations;Taipei City
    日期: 2019-02-15
    上傳時間: 2019-03-30 12:13:30 (UTC+8)
    出版者: Elsevier
    摘要: Air quality deteriorates fast under urbanization in recent decades. Reliable and precise regional multi-step-ahead PM2.5 forecasts are crucial and beneficial for mitigating health risks. This work explores a novel framework (MM-SVM) that combines the Multi-output Support Vector Machine (M-SVM) and the Multi-Task Learning (MTL) algorithm for effectively increasing the accuracy of regional multi-step-ahead forecasts through tackling error accumulation and propagation that is commonly encountered in regional forecasting. The Single-output SVM (S-SVM) is implemented as a benchmark. Taipei City of Taiwan is our study area, where three types of air quality monitoring stations are selected to represent areas imposed with high traffic influences, high human activities and commercial trading influences, and less human interventions close to nature situation, respectively. We consider forecasts of PM2.5 concentrations as a function of meteorological and air quality factors based on long-term (2010–2016) observational datasets. Firstly, the Kendall tau coefficient is conducted to extract key spatiotemporal factors from regional meteorological and air quality inputs. Secondly, the M-SVM model is trained by the MTL to capture non-linear relationships and share correlation information across related tasks. Lastly, the MM-SVM model is validated using hourly time series of PM2.5 concentrations as well as meteorological and air quality datasets. Regarding the applicability of regional multi-step-ahead forecasts, the results demonstrate that the MM-SVM model is much more promising than the S-SVM model because only one forecast model (MM-SVM) is required, instead of constructing a site-specific S-SVM model for each station. Moreover, the forecasts of the MM-SVM are found better consistent with observations than those of any single S-SVM in both training and testing stages. Consequently, the results clearly demonstrate that the MM-SVM model could be recommended as a novel integrative technique for improving the spatiotemporal stability and accuracy of regional multi-step-ahead PM2.5 forecasts.
    關聯: Science of the Total Environment 651(1), p.230-240
    DOI: 10.1016/j.scitotenv.2018.09.111
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML45檢視/開啟
    Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting.pdf2342KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋