English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54451/89232 (61%)
造访人次 : 10569784      在线人数 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/116132

    题名: Multi-output support vector machine for regional multi-step-ahead PM2. 5 forecasting
    作者: Yanlai Zhou;Fi-John Chang;Li-Chiu Chang;I-Feng Kao;Yi-Shin Wang;Che-Chia Kang
    关键词: Multi-output SVM;Multi-task learning algorithm;Multi-step-ahead forecast;PM2.5 concentrations;Taipei City
    日期: 2019-02-15
    上传时间: 2019-03-30 12:13:30 (UTC+8)
    出版者: Elsevier
    摘要: Air quality deteriorates fast under urbanization in recent decades. Reliable and precise regional multi-step-ahead PM2.5 forecasts are crucial and beneficial for mitigating health risks. This work explores a novel framework (MM-SVM) that combines the Multi-output Support Vector Machine (M-SVM) and the Multi-Task Learning (MTL) algorithm for effectively increasing the accuracy of regional multi-step-ahead forecasts through tackling error accumulation and propagation that is commonly encountered in regional forecasting. The Single-output SVM (S-SVM) is implemented as a benchmark. Taipei City of Taiwan is our study area, where three types of air quality monitoring stations are selected to represent areas imposed with high traffic influences, high human activities and commercial trading influences, and less human interventions close to nature situation, respectively. We consider forecasts of PM2.5 concentrations as a function of meteorological and air quality factors based on long-term (2010–2016) observational datasets. Firstly, the Kendall tau coefficient is conducted to extract key spatiotemporal factors from regional meteorological and air quality inputs. Secondly, the M-SVM model is trained by the MTL to capture non-linear relationships and share correlation information across related tasks. Lastly, the MM-SVM model is validated using hourly time series of PM2.5 concentrations as well as meteorological and air quality datasets. Regarding the applicability of regional multi-step-ahead forecasts, the results demonstrate that the MM-SVM model is much more promising than the S-SVM model because only one forecast model (MM-SVM) is required, instead of constructing a site-specific S-SVM model for each station. Moreover, the forecasts of the MM-SVM are found better consistent with observations than those of any single S-SVM in both training and testing stages. Consequently, the results clearly demonstrate that the MM-SVM model could be recommended as a novel integrative technique for improving the spatiotemporal stability and accuracy of regional multi-step-ahead PM2.5 forecasts.
    關聯: Science of the Total Environment 651(1), p.230-240
    DOI: 10.1016/j.scitotenv.2018.09.111
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting.pdf2342KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈