English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55956/90025 (62%)
造訪人次 : 11515422      線上人數 : 114
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/116070


    題名: Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with Type-I hybrid censoring
    作者: Chien-Tai Lin;Yao-Yu Hsu;Siao-Yu Lee;N. Balakrishnan
    關鍵詞: Approximate maximum likelihood estimation;bootstrap;expected Fisher information matrix;log-linear scale stress relationship;maximum likelihood estimation
    日期: 2019-01-28
    上傳時間: 2019-03-30 12:10:44 (UTC+8)
    摘要: In this paper, we consider a constant stress accelerated life test terminated by a hybrid Type-I censoring at the first stress level. The model is based on a general log-location-scale lifetime distribution with mean life being a linear function of stress and with constant scale. We obtain the maximum likelihood estimators (MLE) and the approximate maximum likelihood estimators (AMLE) of the model parameters. Approximate confidence intervals, likelihood ratio tests and two bootstrap methods are used to construct confidence intervals for the unknown parameters of the Weibull and lognormal distributions using the MLEs. Finally, a simulation study and two illustrative examples are provided to demonstrate the performance of the developed inferential methods.
    關聯: Journal of Statistical Computation and Simulation (online)
    DOI: 10.1080/00949655.2019.1571591
    顯示於類別:[數學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML54檢視/開啟
    Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring.pdf2317KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋