English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57326/90921 (63%)
造访人次 : 13033938      在线人数 : 274
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/116070


    题名: Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with Type-I hybrid censoring
    作者: Chien-Tai Lin;Yao-Yu Hsu;Siao-Yu Lee;N. Balakrishnan
    关键词: Approximate maximum likelihood estimation;bootstrap;expected Fisher information matrix;log-linear scale stress relationship;maximum likelihood estimation
    日期: 2019-01-28
    上传时间: 2019-03-30 12:10:44 (UTC+8)
    摘要: In this paper, we consider a constant stress accelerated life test terminated by a hybrid Type-I censoring at the first stress level. The model is based on a general log-location-scale lifetime distribution with mean life being a linear function of stress and with constant scale. We obtain the maximum likelihood estimators (MLE) and the approximate maximum likelihood estimators (AMLE) of the model parameters. Approximate confidence intervals, likelihood ratio tests and two bootstrap methods are used to construct confidence intervals for the unknown parameters of the Weibull and lognormal distributions using the MLEs. Finally, a simulation study and two illustrative examples are provided to demonstrate the performance of the developed inferential methods.
    關聯: Journal of Statistical Computation and Simulation 89(4), p.720-749
    DOI: 10.1080/00949655.2019.1571591
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML68检视/开启
    Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring.pdf2317KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈