淡江大學機構典藏:Item 987654321/116054
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4037820      在线人数 : 550
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116054


    题名: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
    作者: Yanlai Zhou;Fi-John Chang;Li-Chiu Chang;I-Feng Kao;Yi-Shin Wang
    关键词: Multi-output LSTM;Deep learning;Artificial intelligence (AI);Multi-step-ahead forecast;Air quality;Taipei city
    日期: 2019-02
    上传时间: 2019-03-23 12:11:09 (UTC+8)
    出版者: Elsevier
    摘要: Timely regional air quality forecasting in a city is crucial and beneficial for supporting environmental management decisions as well as averting serious accidents caused by air pollution. Artificial Intelligence-based models have been widely used in air quality forecasting. The Shallow Multi-output Long Short-Term Memory (SM-LSTM) model is suitable for regional multi-step-ahead air quality forecasting, while it commonly encounters spatio-temporal instabilities and time-lag effects. To overcome these bottlenecks and overfitting issues, this study proposed a Deep Multi-output LSTM (DM-LSTM) neural network model that were incorporated with three deep learning algorithms (i.e., mini-batch gradient descent, dropout neuron and L2 regularization) to configure the model for extracting the key factors of complex spatio-temporal relations as well as reducing error accumulation and propagation in multi-step-ahead air quality forecasting. The proposed DM-LSTM model was evaluated by three time series of PM2.5, PM10, and NOx simultaneously at five air quality monitoring stations in Taipei City of Taiwan. Results indicated that the loss function values (mean-square-error) of the SM-LSTM and DM-LSTM models in the testing stages at horizon t+4 were 0.87 and 0.72, respectively. The Gbench values of the DM-LSTM model in the testing stages for PM2.5, PM10, and NOx reached 0.95 at horizon t+1 and exceeded 0.81 at horizon t+4, respectively. Results demonstrated that the proposed DM-LSTM model incorporated with three deep learning algorithms could significantly improve the spatio-temporal stability and accuracy of regional multi-step-ahead air quality forecasts.
    關聯: Journal of Cleaner Production 209, p.134-145
    DOI: 10.1016/j.jclepro.2018.10.243
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML256检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈