淡江大學機構典藏:Item 987654321/116052
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62797/95867 (66%)
造訪人次 : 3729725      線上人數 : 610
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116052


    題名: Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus
    作者: Yanlai Zhou;Li-Chiu Chang;Tin-Shuan Uen;Shenglian Guo;Chong-Yu Xu;Fi-John Chang
    關鍵詞: Multi-sectoral water allocation;Small-hydropower;Reservoir operation;Artificial intelligence (AI);Taiwan
    日期: 2019-03-15
    上傳時間: 2019-03-23 12:11:04 (UTC+8)
    出版者: Elsevier
    摘要: The incorporation of renewable power generation into existing water supply systems is known to have far-reaching influences on system operation in response to booming urbanization. This study proposed a holistic system-wide solution driven by water resources perspectives encouraging small-hydropower generation using artificial intelligence techniques to leverage the synergies of the Water-Food-Energy (WFE) Nexus. The Shihmen Reservoir and its water supply system serving the public and agricultural sectors in northern Taiwan constituted the study case. The proposed three-faceted approach was explored systematically through: optimizing multi-sectoral water allocation, maximizing the installation of small-hydropower turbines aligned with the obtained optimal multi-sectoral water allocation, and uplifting the synergistic benefits of the WFE Nexus steered by the optimal water allocation and small-hydropower installation. The findings pointed out that the derived optimal water allocation could greatly alleviate water shortage conditions and improve reservoir water retention while the acquired optimal small-hydropower installation scheme could favor hydropower output without reducing water supply to demanding sectors. Taking the M-5 operational rule curves simulation as the benchmark, the comparative results demonstrated that the multi-year joint optimization under the collaboration of water allocation and small-hydropower installation could offer mutually beneficial outcomes on the WFE Nexus: largely mitigate the average annual water shortage index by up to 40.0% (water sector), boost the average annual food production by as high as 10.6% (food sector), and lift the average annual hydropower output by 7.5% (17 million USD/yr; energy sector), respectively. This study not only opens new perspectives on cleaner energy production benefiting WFE Nexus synergies but suggests policymakers with executable strategies on small-hydropower practice in the light of sustainable development, which carves a niche in small-hydropower practice and contributes to the fulfillment of future energy needs.
    關聯: Applied Energy 238, p.668-682
    DOI: 10.1016/j.apenergy.2019.01.069
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML193檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋