English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10251908 線上人數 : 19568
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library & TKU Library IR team.
搜尋範圍
全部機構典藏
商管學院
資訊管理學系暨研究所
--期刊論文
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於機構典藏
‧
管理
淡江大學機構典藏
>
商管學院
>
資訊管理學系暨研究所
>
期刊論文
>
Item 987654321/116023
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/116023
題名:
以模型融合配合社群網路資料進行流感趨勢預測
其他題名:
Building Fusion Model for Flu Trend Prediction by using Social Web Data
作者:
張昭憲
;
周書任
關鍵詞:
流感監測
;
社群網路分析
;
線性迴歸
;
模型融合
;
influenza surveillance
;
social network analysis
;
linear regression
;
model fusion
日期:
2018-12
上傳時間:
2019-03-16 12:12:19 (UTC+8)
出版者:
中央警察大學
摘要:
根據世界衛生組織(WHO)統計,流感每年在全球約造成300萬個嚴重病例及25萬人死亡,對民生、經濟之影響有目共睹。為監測流感疫情,各國疾管局通常藉由臨床就診通報來彙整資料,但可能產生1~2週的延遲,顯然緩不濟急。考量網路社群已成為現代人生活一部分,若能從中蒐集資料並發展預測方法,應可更快了解流感現況,降低其負面影響。此外,流感流行變化快速、預測不易,但若能整合不同的預測方法,將可提升其準確性。有鑒於此,本研究將運用社群網路資料,以模型融合(Model Fusion)為基礎,建立有效的流感就診率預測方法。首先,我們由不同的網路資料來源蒐集資料,透過關鍵詞集統計建立資料集。接著,配合延遲概念,以線性迴歸建立多種不同特質的預測模型。最後,再透過模型融合整合各模型之預測結果,以提升總體準確性與穩定性。
為驗證提出方法之有效性,本研究蒐集英國地區約82週(2015/8–2017/3)超過160萬筆的Twitter發文,及同時期的Google關鍵字搜尋熱度資料,經處理後進行實驗。與六種單一預測模型相較,本研究提出之方法具有最高的預測關聯度,顯示方法之有效性。為了解各種模型之穩定性,再將流感資料依照流行程度分為「劇升降」區與「緩升降」區進行統計。結果顯示本方法在二個區域分別具有的最高與次高之關聯度,其他單一模型則呈現不一致之預測效果,驗證本方法確能產生較穩定之預測。綜合上述結果,我們相信透過本研究所提出之方法,能提供更有效之流感早期預警,建立更多元的防疫防線。
關聯:
資訊、科技與社會學報 18, p.1-20
顯示於類別:
[資訊管理學系暨研究所] 期刊論文
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
149
檢視/開啟
以模型融合配合社群網路資料進行流感趨勢預測.pdf
1925Kb
Adobe PDF
1
檢視/開啟
在機構典藏中所有的資料項目都受到原著作權保護.
TAIR相關文章
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library & TKU Library IR teams.
Copyright ©
-
回饋