淡江大學機構典藏:Item 987654321/115961
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64188/96967 (66%)
造访人次 : 11338341      在线人数 : 121
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115961


    题名: An on-line robust and adaptive T-S fuzzy-neural controller for more general unknown systems
    作者: Wang, W.Y.;Chien, Y.H.;Li, I.H.
    日期: 2008-03
    上传时间: 2019-03-14 12:10:22 (UTC+8)
    出版者: Springer
    摘要: This paper proposes a novel method of on-line modeling via the Takagi-Sugeno (T-S) fuzzy-neural model and robust adaptive control for a class of general unknown nonaffine nonlinear systems with external disturbances. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known on the more complicated and general nonlinear systems. Compared with the previous approaches, the contribution of this paper is an investigation of the more general unknown nonaffine nonlinear systems using on-line adaptive T-S fuzzy-neural controllers. Instead of modeling these unknown systems directly, the T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS), with modeling errors and external disturbances. We prove that the closed-loop system controlled by the proposed controller is robust stable and the effect of all the unmodeled dynamics, modeling errors and external disturbances on the tracking error is attenuated under mild assumptions. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
    關聯: International Journal of Fuzzy Systems 10(1), p.33-43
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An On-Line Robust and Adaptive TS Fuzzy-Neural Controller for More General Unknown Systems..pdf497KbAdobe PDF1检视/开启
    index.html0KbHTML134检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈