English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11333020      線上人數 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115961


    題名: An on-line robust and adaptive T-S fuzzy-neural controller for more general unknown systems
    作者: Wang, W.Y.;Chien, Y.H.;Li, I.H.
    日期: 2008-03
    上傳時間: 2019-03-14 12:10:22 (UTC+8)
    出版者: Springer
    摘要: This paper proposes a novel method of on-line modeling via the Takagi-Sugeno (T-S) fuzzy-neural model and robust adaptive control for a class of general unknown nonaffine nonlinear systems with external disturbances. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known on the more complicated and general nonlinear systems. Compared with the previous approaches, the contribution of this paper is an investigation of the more general unknown nonaffine nonlinear systems using on-line adaptive T-S fuzzy-neural controllers. Instead of modeling these unknown systems directly, the T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS), with modeling errors and external disturbances. We prove that the closed-loop system controlled by the proposed controller is robust stable and the effect of all the unmodeled dynamics, modeling errors and external disturbances on the tracking error is attenuated under mild assumptions. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
    關聯: International Journal of Fuzzy Systems 10(1), p.33-43
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    An On-Line Robust and Adaptive TS Fuzzy-Neural Controller for More General Unknown Systems..pdf497KbAdobe PDF1檢視/開啟
    index.html0KbHTML134檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋